
Lecture 15. Numerical Modeling      

Most atmospheric models use partial differential equations which 
are solved numerically. A computational grid and numerical method 
selected to solve the equations are based on the following criteria 

 

Accuracy, which for a simple problem can be estimated by comparing the 
numerical solution with its analytical counterpart; 

 

Stability, which often imposes a restriction on the time step; 

 

Transportivity, which requires that any perturbation is advected downwind; 

 

Locality, such that the solution of the advection problem at a given point is 
not significantly influenced by the field far from that point; 

 

Conservation, which requires that no gain nor loss of mass occurs during the 
transport; 

 

Monotonicity (shape preserving), through which the occurrence of new 
extrema is prohibited; these extrema (noise) are characterized by 
undershoots and overshoots near regions of strong gradients; 

 

Efficiency, such that the computer time consumed is not prohibitive, and the 
storage requirement does not exceed computer capacity 



 
1 Numerical Grid 
A grid is defined as a set of cells created by edges joining pairs of vertices defined 
in a discretization. The most common form of cells is rectangular, but triangular is 
also used for specific applications.  

RECTANGULAR GRID 
The most commonly used discretization in Earth system science is logically rectangular with 
spherical coordinates. However, it necessitates filtering of the variables at the pole due to their 
singularity. The filter is limiting the parallelization and is not always conservative, such that 
more specialized grids such as the tripolar or cubed-sphere grids are preferably used on 
massively parallel computers.  

 

Figure 1 Global Cartesiand grid used by ECMWF re-analysis with a 2.5x2.5 degree spacing. Singularity at 
the poles require polar capping  



 

Figure 2 Cube-sphere grid, projecting the sphere onto the 6 faces of a cube. Polar singularities are avoided, at 
the expense of some grid distorsion near the cube's vertices.  

 

Figure 4 Tripolar grid, often used in ocean modeling. Polar singularities are placed over 
land and excluded from the simulation.  



TRIANGULAR GRID 
Triangular discretizations are increasingly voguish in the eld. A structured 
triangular discretization of an icosahedral projection is a popular new approach 
resulting in a geodesic grid. An example of a structured triangular grid is shown in 
the Figure below. The grid is generated by recursive division of the 20 triangular 
faces of an icosahedron. 

  

Figure 3 A structured triangular discretization of the sphere. Note that all vertices at any truncation level ni 
are also vertices at any higher level of truncation.  

UNSTRUCTURED GRID 
Numerically generated unstructured triangular discretizations are often used over 
complex terrain. 

  



STAGGERING GRID 
Algorithms place quantities at different locations within a grid cell (“staggering”). 
The staggering of the grids is related with the computational stability of various 
numerical schemes. The Arakawa grids show different ways to represent velocities 
and masses on grids        

GRID REFINMENT 
A re ned grid is usually a ne grid overlying a coarse grid, with some refinement 
ratio between their grid spacing. The vertices on the coarse grid are also vertices on 
the ne grid.  
For nested grids, the grids must be aligned with the model coordinates, and the 
mesh refinement ratio of the temporal and spatial grid increments is common for 
all meshes. The interactions between meshes can be 1-way (coarse to fine) or 2-
way (coarse-fine-coarse). 
The most important element for any mesh refinement method is an accurate and 
efficient interpolation procedure.  



 

Figure 3. Nested grids over Hawaii: A. Coarse global 2.5x2.5 grid; B. Finer grid (27x27 km) 
over the Hawaii islands; C. Very fine resolution (9x9 km) over Hawaii big island.     

In a 2-way interactions, the solution from the fine grid feeds back into the coarse 
grid. Without smoothing or averaging, the solution on the coarse grid will appear 
noisy. The Shapiro filter is generally applied. The algorithm of the Shapiro filter 
applied to the variable is given by 
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Where =0.5 for the nine point averager.   



EXCHANGE GRID 
Given two grids, an exchange grid is the set of cells defined by the union of all the 
vertices of the two parent grids. 

 

Each exchange grid cell El can be uniquely associated with exactly one cell on 
each parent grid, and fractional areas with respect to the parent grid cells. 
Quantities being transferred from one parent grid to the other are first interpolated 
onto the exchange grid using one set of fractional areas; and then averaged onto the 
receiving grid using the other set of fractional areas. If a particular moment of the 
exchanged quantity is required to be conserved, consistent moment-conserving 
interpolation and averaging functions of the fractional area may be employed. This 
may require not only the cell-average of the quantity (zeroth-order moment) but 
also higher-order moments to be transferred across the exchange grid.  

MASK 
A complication arises when one of the surfaces is partitioned into complementary 
components: in Earth system models, a typical example is that of an ocean and 
land surface that together tile the area under the atmosphere. Conservative 
exchange between three components may then be required: quantities like CO2 
have reservoirs in all three media, with the total carbon inventory being conserved. 

 



The Figure above shows such an instance, with an atmosphere-land grid and an 
ocean grid of different resolution. The green line in the rst two frames shows the 
land-sea mask as discretized on the two grids, with the cells marked L belonging to 
the land. Due to the differing resolution, certain exchange grid cells have 
ambiguous status: the two blue cells are claimed by both land and ocean, while the 
orphan red cell is claimed by neither.  

Cells of ambiguous status are resolved by adopting some ownership convention. 
For example, in the exchange grid, the land model is modified as needed: the land 
grid cells are quite independent of each other and amenable to such 
transformations. Cells are added to the land grid until there are no orphan “red” 
cells left on the exchange grid, then get rid of the “blue” cells by clipping the 
fractional areas on the land side.  

GRID TILING 
A further complication arises when we consider tiles within parent grid cells. Tiles 
are a refinement within physical grid cells, where a quantity is partitioned among 
“bins” each owning a fraction of it. Tiles within a grid cell do not have 
independent physical locations, only their associated fraction. Examples include 
different vegetation types within a single land grid cell, which may have different 
temperature or moisture retention properties, or partitions of different ice thickness 
representing fractional ice coverage within a grid cell.  

IMPLICIT COUPLING 
Fluxes at the surface often need to be treated using an implicit timestep. 

  

Figure. Tridiagonal inversion across multiple components and an exchange grid. The tmospheric 
and land temperatures TA and TL are part of an implicit diffusion equation, coupled by the 
implicit surface flux on the exchange grid, FE(Tn+1A ; Tn+1L ).  



The general procedure for solving such trid-diagonal matrix is to split into separate 
up and down steps. In GFDL model there is a first sweep down the atmosphere ( 
“atmosphere_down” step) and then handed off to the exchange grid, where 
fluxes are computed. The land or ocean surface models recover the values from the 
exchange grid and continue the calculation and return values to the exchange grid. 
The computation is then completed in the up-sweep of the atmosphere.   

PARALLELIZATION 
In general, not only are the parent grids physically independent, they are also 
parallelized independently. Thus, for any exchange grid, the parent cells may be on 
different processors. A choice has to be made either: 
1. to inherit the parallel decomposition from one of the parent grids (thereby 

eliminating communication for one of the data exchanges); or 
2. to assign an independent decomposition to the exchange grid, which may 

provide better load balance. 
In the GFDL exchange grid design, the first choice has been selected. 

2 Numerical methods  

1.1. Numerical Method for advection 
To simplify, we consider 1D advection equation 
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1.1.1. Eulerian algorithm 
Spatial grid points are fixed and flux of air mass passing through them is 
computed. The general limitation comes from the Courant-Friedricks-Lewy 
(CFL) stability criterion 
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where C is a constant of order unity. 



 

1.1.2. Semi-lagrangian algorithm 
In semi-lagrangian formulation, the solution on prescribed grid points is 
derived at each time step on the basis of a Lagrangian backward calculation. 
The initial position n

ix  of the grid point i at time tn, which after one time 
t step arrives at the mesh point 1n

ix  , is calculated by 
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In general n
ix does not coincide with 1n

ix , so that the velocity iu has to be 
estimated by interpolation (NB. iu should be interpolated in time and space).  



The success of the method (accuracy, monotonicity, shape preserving) is 
greatly dependent on the interpolation scheme used.  

An algorithm to calculate the back-trajectory position is: 
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where k is the iteration level. The maximum number of iteration depends on 
how far apart are the calculation position kn

ix )( and 1)( kn
ix 

  

1.1.3. Lagrangian 
In the Lagrangian schemes, distinct air parcels, in which the tracers are 
assumed to be homogenously mixed, are followed as they are displaced. 
Lagrangian schemes are simple but the accumulation of errors in 
determining parcel location is too large for global models. 



 
1.1.4. Algorithm Evaluation 
The performances of numerical schemes are compared with simple tests. For 
example, the advection at constant speed of a triangle shows that linear 
schemes are diffusive and does not preserve the shape, while high order 
schemes are shape preserving but produce overshooting and undershooting 
(negative values!).  

1.1.5. Mass Fixer  
Negative tracer values can be generated by several different terms. The advection 

of tracers using centered differencing schemes may be the largest contributor to 
negative tracer. Also the use of polar filtering with the centered difference 
advection scheme is a very large contributor in high latitudes. Another less obvious 
source of negative tracer is higher-order horizontal mixing. The second-order 
smoothing operator does not create negative tracer, but the fourth-order or higher 
schemes can create negative tracer when there are very sharp gradients. 
With semi-Lagrangian finite-volume advection schemes the source of negative 
tracer is limited to truncation errors.  
Negative concentration should be corrected with a mass conservative and non-
diffusive scheme. Diffusive schemes (e.g. Shapiro filtering) are conservative but 
are not shape preserving.  Filling schemes borrow from the nearest grid points in 
the vertical and horizontal in a way that conserves the global tracer mass.  



1.2. Numerical Method for diffusion 
The 1D diffusion transport equation of a is given by 
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where K is the so-called diffusion coefficient. There are several algorithms 
available to solve this equation. The explicit scheme is stable only if 
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While Crank-Nicholson, Chapeau, and fully implicit are unconditionally stable. 
These last three schemes result in tridiagonal matrix.   



    

1. Prepare input files of anthropogenic aerosol emission 

 



  



 

2. Compile the source code 
3. Prepare the running script 
4. Submit the job 
5. Comparing results with other models and observations 



    


